deploying_aipys =============== Deploying AIPyS for Integration with Nikon-nis Elements ------------------------------------------------------- Leverage the AIPyS platform for efficient image processing, segmentation, analysis, and deployment file generation compatible with the Nikon-nis elements jobs module. Utilize the following command-line interface (CLI) instructions for a comprehensive workflow: Initial Image Selection and Parameter Adjustment ------------------------------------------------ 1. **Image Selection and Path Configuration:** .. code-block:: none updateParameters --Image_name "\dest\20X\WT\3_XY01.tif" 2. **Diameter Measurement via measDia (Web Application):** In this step, use the web application to measure the diameter across several sample cells. This helps establish analysis parameters: .. code-block:: none aipys --option measDia 3. **Update Estimated Cell Diameter:** Assuming a standard object diameter of 60 for a 20x objective: .. code-block:: none updateParameters --diameter 60 Segmented Image Video Production -------------------------------- 4. **Configure Video Generation Parameters:** Specify the details for video creation including, image count, video name, and related configurations: .. code-block:: none updateParameters --videoName "ImageSeqcp.avi" --data_dir "\dest\20X\PHENO" --imagesN 5 --outPath "\dest\AIPyS_output_images" --model_type cyto --channels greyscale 5. **Generate the Segmented Image Sequence with Cellpose:** .. code-block:: none aipys --option cp_seg_video Granularity Analysis -------------------- 6. **Define Granularity Analysis Parameters:** .. code-block:: none updateParameters --videoName "GranMeasVideo_cp.avi" --start_kernel 2 --end_karnel 50 --kernel_size 20 --extract_pixel 50 --resize_pixel 150 --outputImageSize 500 7. **Produce Granularity Images:** .. code-block:: none aipys --option cp_gran_video Data Labeling and Visualization -------------------------------- 8. **Save Single Cell Images & Compile an Intensity Table:** Specify the desired kernel size and set the base directory for gathering training data: .. code-block:: none updateParameters --kernelGran 6 --trainingDataPath "\dest\20X" --imagesN 5 .. code-block:: none aipys --option cp_gran_table_gen 9. **Binary Labeling via dataLabeling (Web Application):** With this tool, users can perform binary phenotype labeling for the training dataset, improving the model's accuracy: .. code-block:: none updateParameters --imagePath "\dest\AIPyS_output_images\imageSequence\images" --dataPath "\dest\AIPyS_output_images\imageSequence\data" .. code-block:: none aipys --option dataLabeling 10. **Analyze Image Distribution with data_viz (Web Application):** Engage in data visualization to scrutinize image distribution and evaluate analytical results: .. code-block:: none updateParameters --imagePath "\dest\AIPyS_output_images\table_example\images" --dataPath "\dest\AIPyS_output_images\table_example" .. code-block:: none aipys --option data_viz Model Construction and Deployment File Preparation -------------------------------------------------- 11. **Build the Deployment Model:** Establish criteria for data training and model development: .. code-block:: none updateParameters --dataPath "\dest\AIPyS_output_images\table_example" --outPath "\dest\AIPyS_output_images" --imW 10 --imH 10 --thold 0.7 --areaSel 1000 --fractionData 50 .. code-block:: none aipys --option modelBuild 12. **Generate Deployment Build File:** After the model is finalized, ready the deployment file for integration with Nikon-nis elements: .. code-block:: none updateParameters --Image_name "\dest\022224\2.tif" --outPath "\dest\AIPyS_output_images\outproc_temp" .. code-block:: none aipys --option deployBuild Parameter Management -------------------- For adjustments or resets of parameters at any phase: - **For Help:** ``load-parameters --help`` - **To Generate Default Parameters:** ``load-parameters --select generate`` - **To Reset Parameters:** ``load-parameters --select reset`` - **To Display Current Settings:** ``load-parameters --select display`` Ensure to align paths to your directory configurations. The full suite of CLI instructions provides a detailed process from initiating the AIPyS project to model readiness and subsequent deployment, with enhanced focus on web application functions for user engagement and analytic insights.