deploying_aipys

Deploying AIPyS for Integration with Nikon-nis Elements

Leverage the AIPyS platform for efficient image processing, segmentation, analysis, and deployment file generation compatible with the Nikon-nis elements jobs module. Utilize the following command-line interface (CLI) instructions for a comprehensive workflow:

Initial Image Selection and Parameter Adjustment

  1. Image Selection and Path Configuration:

    updateParameters --Image_name "\dest\20X\WT\3_XY01.tif"
    
  2. Diameter Measurement via measDia (Web Application):

    In this step, use the web application to measure the diameter across several sample cells. This helps establish analysis parameters:

    aipys --option measDia
    
  3. Update Estimated Cell Diameter:

    Assuming a standard object diameter of 60 for a 20x objective:

    updateParameters --diameter 60
    

Segmented Image Video Production

  1. Configure Video Generation Parameters:

    Specify the details for video creation including, image count, video name, and related configurations:

    updateParameters --videoName "ImageSeqcp.avi" --data_dir "\dest\20X\PHENO" --imagesN 5 --outPath "\dest\AIPyS_output_images" --model_type cyto --channels greyscale
    
  2. Generate the Segmented Image Sequence with Cellpose:

    aipys --option cp_seg_video
    

Granularity Analysis

  1. Define Granularity Analysis Parameters:

    updateParameters --videoName "GranMeasVideo_cp.avi" --start_kernel 2 --end_karnel 50 --kernel_size 20 --extract_pixel 50 --resize_pixel 150 --outputImageSize 500
    
  2. Produce Granularity Images:

    aipys --option cp_gran_video
    

Data Labeling and Visualization

  1. Save Single Cell Images & Compile an Intensity Table:

    Specify the desired kernel size and set the base directory for gathering training data:

    updateParameters --kernelGran 6 --trainingDataPath "\dest\20X" --imagesN 5
    
    aipys --option cp_gran_table_gen
    
  2. Binary Labeling via dataLabeling (Web Application):

    With this tool, users can perform binary phenotype labeling for the training dataset, improving the model’s accuracy:

    updateParameters --imagePath "\dest\AIPyS_output_images\imageSequence\images" --dataPath "\dest\AIPyS_output_images\imageSequence\data"
    
    aipys --option dataLabeling
    
  3. Analyze Image Distribution with data_viz (Web Application):

    Engage in data visualization to scrutinize image distribution and evaluate analytical results:

    updateParameters --imagePath "\dest\AIPyS_output_images\table_example\images" --dataPath "\dest\AIPyS_output_images\table_example"
    
    aipys --option data_viz
    

Model Construction and Deployment File Preparation

  1. Build the Deployment Model:

    Establish criteria for data training and model development:

    updateParameters --dataPath "\dest\AIPyS_output_images\table_example" --outPath "\dest\AIPyS_output_images" --imW 10 --imH 10 --thold 0.7 --areaSel 1000 --fractionData 50
    
    aipys --option modelBuild
    
  2. Generate Deployment Build File:

    After the model is finalized, ready the deployment file for integration with Nikon-nis elements:

    updateParameters --Image_name "\dest\022224\2.tif" --outPath "\dest\AIPyS_output_images\outproc_temp"
    
    aipys --option deployBuild
    

Parameter Management

For adjustments or resets of parameters at any phase:

  • For Help: load-parameters --help

  • To Generate Default Parameters: load-parameters --select generate

  • To Reset Parameters: load-parameters --select reset

  • To Display Current Settings: load-parameters --select display

Ensure to align paths to your directory configurations. The full suite of CLI instructions provides a detailed process from initiating the AIPyS project to model readiness and subsequent deployment, with enhanced focus on web application functions for user engagement and analytic insights.